Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.796
Filtrar
1.
Emerg Microbes Infect ; 13(1): 2337673, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38572517

RESUMO

Influenza A viruses (IAVs) pose a persistent potential threat to human health because of the spillover from avian and swine infections. Extensive surveillance was performed in 12 cities of Guangxi, China, during 2018 and 2023. A total of 2540 samples (including 2353 nasal swabs and 187 lung tissues) were collected from 18 pig farms with outbreaks of respiratory disease. From these, 192 IAV-positive samples and 19 genomic sequences were obtained. We found that the H1 and H3 swine influenza A viruses (swIAVs) of multiple lineages and genotypes have continued to co-circulate during that time in this region. Genomic analysis revealed the Eurasian avian-like H1N1 swIAVs (G4) still remained predominant in pig populations. Strikingly, the novel multiple H3N2 genotypes were found to have been generated through the repeated introduction of the early H3N2 North American triple reassortant viruses (TR H3N2 lineage) that emerged in USA and Canada in 1998 and 2005, respectively. Notably, when the matrix gene segment derived from the H9N2 avian influenza virus was introduced into endemic swIAVs, this produced a novel quadruple reassortant H1N2 swIAV that could pose a potential risk for zoonotic infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Suínos , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , China/epidemiologia , Doenças dos Suínos/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Influenza Humana/epidemiologia , Vírus Reordenados/genética , Filogenia
2.
Emerg Microbes Infect ; 13(1): 2341142, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38581279

RESUMO

H6N6 avian influenza viruses (AIVs) have been widely detected in wild birds, poultry, and even mammals. Recently, H6N6 viruses were reported to be involved in the generation of H5 and H7 subtype viruses. To investigate the emergence, evolutionary pattern, and potential for an epidemic of H6N6 viruses, the complete genomes of 198 H6N6 viruses were analyzed, including 168 H6N6 viruses deposited in the NCBI and GISAID databases from inception to January 2019 and 30 isolates collected from China between November 2014 and January 2019. Using phylogenetic analysis, the 198 strains of H6N6 viruses were identified as 98 genotypes. Molecular clock analysis indicated that the evolution of H6N6 viruses in China was constant and not interrupted by selective pressure. Notably, the laboratory isolates reassorted with six subtype viruses: H6N2, H5N6, H7N9, H5N2, H4N2, and H6N8, resulting in nine novel H6N6 reassortment events. These results suggested that H6N6 viruses can act as an intermediary in the evolution of H5N6, H6N6, and H7N9 viruses. Animal experiments demonstrated that the 10 representative H6N6 viruses showed low pathogenicity in chickens and were capable of infecting mice without prior adaptation. Our findings suggest that H6N6 viruses play an important role in the evolution of AIVs, and it is necessary to continuously monitor and evaluate the potential epidemic of the H6N6 subtype viruses.


Assuntos
Galinhas , Evolução Molecular , Genoma Viral , Vírus da Influenza A , Influenza Aviária , Filogenia , Vírus Reordenados , Animais , China/epidemiologia , Vírus Reordenados/genética , Vírus Reordenados/classificação , Vírus Reordenados/isolamento & purificação , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Camundongos , Galinhas/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Genótipo , Humanos
3.
Microbiol Spectr ; 12(4): e0218123, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38446039

RESUMO

Novel H1N2 and H3N2 swine influenza A viruses (IAVs) have recently been identified in Chile. The objective of this study was to evaluate their zoonotic potential. We perform phylogenetic analyses to determine the genetic origin and evolution of these viruses, and a serological analysis to determine the level of cross-protective antibodies in the human population. Eight genotypes were identified, all with pandemic H1N1 2009-like internal genes. H1N1 and H1N2 were the subtypes more commonly detected. Swine H1N2 and H3N2 IAVs had hemagglutinin and neuraminidase lineages genetically divergent from IAVs reported worldwide, including human vaccine strains. These genes originated from human seasonal viruses were introduced into the swine population since the mid-1980s. Serological data indicate that the general population is susceptible to the H3N2 virus and that elderly and young children also lack protective antibodies against the H1N2 strains, suggesting that these viruses could be potential zoonotic threats. Continuous IAV surveillance and monitoring of the swine and human populations is strongly recommended.IMPORTANCEIn the global context, where swine serve as crucial intermediate hosts for influenza A viruses (IAVs), this study addresses the pressing concern of the zoonotic potential of novel reassortant strains. Conducted on a large scale in Chile, it presents a comprehensive account of swine influenza A virus diversity, covering 93.8% of the country's industrialized swine farms. The findings reveal eight distinct swine IAV genotypes, all carrying a complete internal gene cassette of pandemic H1N1 2009 origin, emphasizing potential increased replication and transmission fitness. Genetic divergence of H1N2 and H3N2 IAVs from globally reported strains raises alarms, with evidence suggesting introductions from human seasonal viruses since the mid-1980s. A detailed serological analysis underscores the zoonotic threat, indicating susceptibility in the general population to swine H3N2 and a lack of protective antibodies in vulnerable demographics. These data highlight the importance of continuous surveillance, providing crucial insights for global health organizations.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Criança , Humanos , Animais , Suínos , Pré-Escolar , Idoso , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Vírus da Influenza A Subtipo H1N1/genética , Filogenia , Chile/epidemiologia , Vírus Reordenados/genética , Doenças dos Suínos/epidemiologia , Influenza Humana/epidemiologia
4.
J Virol ; 98(3): e0170323, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38353535

RESUMO

The increased detection of H3 C-IVA (1990.4.a) clade influenza A viruses (IAVs) in US swine in 2019 was associated with a reassortment event to acquire an H1N1pdm09 lineage nucleoprotein (pdmNP) gene, replacing a TRIG lineage NP (trigNP). We hypothesized that acquiring the pdmNP conferred a selective advantage over prior circulating H3 viruses with a trigNP. To investigate the role of NP reassortment in transmission, we identified two contemporary 1990.4.a representative strains (NC/19 and MN/18) with different evolutionary origins of the NP gene. A reverse genetics system was used to generate wild-type (wt) strains and swap the pdm and TRIG lineage NP genes, generating four viruses: wtNC/19-pdmNP, NC/19-trigNP, wtMN/18-trigNP, and MN/18-pdmNP. The pathogenicity and transmission of the four viruses were compared in pigs. All four viruses infected 10 primary pigs and transmitted to five indirect contact pigs per group. Pigs infected via contact with MN/18-pdmNP shed virus 2 days earlier than pigs infected with wtMN/18-trigNP. The inverse did not occur for wtNC/19-pdmNP and NC/19-trigNP. This suggests that pdmNP reassortment resulted in a combination of genes that improved transmission efficiency when paired with the 1990.4.a hemagglutinin (HA). This is likely a multigenic trait, as replacing the trigNP gene did not diminish the transmission of a wild-type IAV in swine. This study demonstrates how reassortment and evolutionary change of internal genes can result in more transmissible viruses that influence HA clade detection frequency. Thus, rapidly identifying novel reassortants paired with dominant hemagglutinin/neuraminidase may improve the prediction of strains to include in vaccines.IMPORTANCEInfluenza A viruses (IAVs) are composed of eight non-continuous gene segments that can reassort during coinfection of a host, creating new combinations. Some gene combinations may convey a selective advantage and be paired together preferentially. A reassortment event was detected in swine in the United States that involved the exchange of two lineages of nucleoprotein (NP) genes (trigNP to pdmNP) that became a predominant genotype detected in surveillance. Using a transmission study, we demonstrated that exchanging the trigNP for a pdmNP caused the virus to shed from the nose at higher levels and transmit to other pigs more rapidly. Replacing a pdmNP with a trigNP did not hinder transmission, suggesting that transmission efficiency depends on interactions between multiple genes. This demonstrates how reassortment alters IAV transmission and that reassortment events can provide an explanation for why genetically related viruses with different internal gene combinations experience rapid fluxes in detection frequency.


Assuntos
Vírus da Influenza A , Proteínas do Nucleocapsídeo , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Hemaglutininas , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Vírus Reordenados/genética , Suínos , Estados Unidos , Proteínas do Nucleocapsídeo/metabolismo
5.
Virology ; 592: 110009, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38330852

RESUMO

Swine influenza viruses pose ongoing threat to pork industry throughout the world. In 2023, fattening pigs from a swine farm in Inner Mongolia of China experienced influenza-like symptoms. Co-infection of influenza A virus with Pasteurella multocida was diagnosed in lung tissues of diseased pigs and a genotype 4 (G4) Eurasian avian-like (EA) H1N1 virus was isolated, which was named as A/swine/Neimenggu/0326/2023. We demonstrated the virus preferentially bound human-like SAα2,6Gal receptor. It was noteworthy that the virus possessed multiple genetic markers for mammalian adaptation in the internal genes. Animal studies showed that compared with genotype 1 (G1) EA H1N1 virus and early prevalent G4 EA H1N1 virus, A/swine/Neimenggu/0326/2023 virus exhibited increased virus shedding, enhanced replication in lungs, and caused more severe lung lesions in pigs. These findings indicate that the G4 EA H1N1 virus poses increased threat to pork industry, controlling the prevailing viruses in pigs should be promptly implemented.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Pneumonia , Doenças dos Suínos , Suínos , Humanos , Animais , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A/genética , Genótipo , Aves , China/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Vírus Reordenados/genética , Mamíferos
8.
Zoonoses Public Health ; 71(3): 281-293, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38110691

RESUMO

AIMS: Swine are a mixing vessel for the emergence of novel reassortant influenza A viruses (IAV). Interspecies transmission of swine-origin IAV poses a public health and pandemic risk. In the United States, the majority of zoonotic IAV transmission events have occurred in association with swine exposure at agricultural fairs. Accordingly, this human-animal interface necessitates mitigation strategies informed by understanding of interspecies transmission mechanisms in exhibition swine. Likewise, the diversity of IAV in swine can be a source for novel reassortant or mutated viruses that pose a risk to both swine and human health. METHODS AND RESULTS: In an effort to better understand those risks, here we investigated the epidemiology of IAV in exhibition swine and subsequent transmission to humans by performing phylogenetic analyses using full genome sequences from 272 IAV isolates collected from exhibition swine and 23 A(H3N2)v viruses from human hosts during 2013-2015. Sixty-seven fairs (24.2%) had at least one pig test positive for IAV with an overall estimated prevalence of 8.9% (95% CI: 8.3-9.6, Clopper-Pearson). Of the 19 genotypes found in swine, 5 were also identified in humans. There was a positive correlation between the number of human cases of a genotype and its prevalence in exhibition swine. Additionally, we demonstrated that A(H3N2)v viruses clustered tightly with exhibition swine viruses that were prevalent in the same year. CONCLUSIONS: These data indicate that multiple genotypes of swine-lineage IAV have infected humans, and highly prevalent IAV genotypes in exhibition swine during a given year are also the strains detected most frequently in human cases of variant IAV. Continued surveillance and rapid characterization of IAVs in exhibition swine can facilitate timely phenotypic evaluation and matching of candidate vaccine strains to those viruses present at the human-animal interface which are most likely to spillover into humans.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Humanos , Animais , Suínos , Estados Unidos/epidemiologia , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H3N2/genética , Filogenia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Influenza Humana/epidemiologia , Vírus Reordenados/genética
9.
Virology ; 589: 109927, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951087

RESUMO

The reassortment between avian H9N2 and Eurasian avian-like (EA) H1N1 viruses may have potentially changed from avian-to-mammals adaptation. This study generated 20 reassortant viruses with the introduction of H1N1/2009 internal genes from EA H1N1 virus into H9N2 virus. 12 of these recovered the replication capability both in the lungs and turbinate samples. 10 of 12 obtained PA gene segments from the ribonucleoprotein (RNP) complexes of the EA H1N1 virus, and 3 exhibited extreme virulence. Specially, the combination of PB2, PA and NP genes could overcome the species-specific restriction in human cells. Analysis of the polymerase activities found that introduction of the PA gene resulted in increased polymerase activity. These findings indicated that RNP complexes from EA H1N1 virus could confer an adaptation advantage and high compatibility to avian H9N2 virus. This raises new concerns for public health due to the possible coexistence of H9N2 and EA H1N1 viruses in dogs.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Suínos , Cães , Humanos , Camundongos , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus Reordenados/genética , Virulência/genética , Aves , Ribonucleoproteínas/genética , Infecções por Orthomyxoviridae/veterinária , Replicação Viral , Mamíferos
10.
Virology ; 589: 109926, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952465

RESUMO

H9N2 subtype avian influenza virus (AIV) can transmit by direct as well as airborne contacts. It has been widespread in poultry and continued to contribute to zoonotic spillover events by providing its six internal genes for the reassortment of novel influenza viruses (eg, H7N9) that infect poultry and humans. Compared to H7N9, H9N2 virus displays an efficient airborne transmissibility in poultry, but the mechanisms of transmission difference have been insufficiently studied. The Hemagglutinin (HA) and viral polymerase acidic protein (PA) have been implicated in the airborne transmission of influenza A viruses. Accordingly, we generated the reassortant viruses of circulating airborne transmissible H9N2 and non-airborne transmissible H7N9 viruses carrying HA and/or PA gene. The introduction of the PA gene from H7N9 into the genome of H9N2 virus resulted in a reduction in airborne transmission among chickens, while the isolated introduction of the HA gene segment completely eliminated airborne transmission among chickens. We further showed that introduction of HA gene of non-transmissible H7N9 did not influence the HA/NA balance of H9N2 virus, but increased the threshold for membrane fusion and decreased the acid stability. Thus, our results indicate that HA protein plays a key role in replication, stability, and airborne transmission of the H9N2 subtype AIV.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Humanos , Animais , Galinhas , Hemaglutininas , Subtipo H7N9 do Vírus da Influenza A/genética , Aerossóis e Gotículas Respiratórios , Aves Domésticas , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírus Reordenados/genética , Vírus Reordenados/metabolismo , Filogenia
11.
PLoS Pathog ; 19(12): e1011838, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38048355

RESUMO

Influenza A viruses are RNA viruses that cause epidemics in humans and are enzootic in the pig population globally. In 2009, pig-to-human transmission of a reassortant H1N1 virus (H1N1pdm09) caused the first influenza pandemic of the 21st century. This study investigated the infection dynamics, pathogenesis, and lesions in pigs and ferrets inoculated with natural isolates of swine-adapted, human-adapted, and "pre-pandemic" H1N1pdm09 viruses. Additionally, the direct-contact and aerosol transmission properties of the three H1N1pdm09 isolates were assessed in ferrets. In pigs, inoculated ferrets, and ferrets infected by direct contact with inoculated ferrets, the pre-pandemic H1N1pdm09 virus induced an intermediary viral load, caused the most severe lesions, and had the highest clinical impact. The swine-adapted H1N1pdm09 virus induced the highest viral load, caused intermediary lesions, and had the least clinical impact in pigs. The human-adapted H1N1pdm09 virus induced the highest viral load, caused the mildest lesions, and had the least clinical impact in ferrets infected by direct contact. The discrepancy between viral load and clinical impact presumably reflects the importance of viral host adaptation. Interestingly, the swine-adapted H1N1pdm09 virus was transmitted by aerosols to two-thirds of the ferrets. Further work is needed to assess the risk of human-to-human aerosol transmission of swine-adapted H1N1pdm09 viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Animais , Suínos , Vírus da Influenza A Subtipo H1N1/genética , Furões , Aerossóis e Gotículas Respiratórios , Vírus Reordenados/genética
12.
Viruses ; 15(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38140694

RESUMO

Rotavirus (RVA) is a leading cause of childhood gastroenteritis. RVA vaccines have reduced the global disease burden; however, the emergence of intergenogroup reassortant strains is a growing concern. During surveillance in Ghana, we observed the emergence of G9P[4] RVA strains in the fourth year after RVA vaccine introduction. To investigate whether Ghanaian G9P[4] strains also exhibited the DS-1-like backbone, as seen in reassortant G1/G3/G8/G9 strains found in other countries in recent years, this study determined the whole genome sequences of fifteen G9P[4] and two G2P[4] RVA strains detected during 2015-2016. The results reveal that the Ghanaian G9P[4] strains exhibited a double-reassortant genotype, with G9-VP7 and E6-NSP4 genes on a DS-1-like backbone (G9-P[4]-I2-R2-C2-M2-A2-N2-T2-E6-H2). Although they shared a common ancestor with G9P[4] DS-1-like strains from other countries, further intra-reassortment events were observed among the original G9P[4] and co-circulating strains in Ghana. In the post-vaccine era, there were significant changes in the distribution of RVA genotype constellations, with unique strains emerging, indicating an impact beyond natural cyclical fluctuations. However, reassortant strains may exhibit instability and have a limited duration of appearance. Current vaccines have shown efficacy against DS-1-like strains; however, ongoing surveillance in fully vaccinated children is crucial for addressing concerns about long-term effectiveness.


Assuntos
Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Criança , Humanos , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/genética , Gana/epidemiologia , Genoma Viral , Vírus Reordenados/genética , Filogenia , Rotavirus/genética , Genótipo
13.
Arch Virol ; 168(11): 267, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801138

RESUMO

Genotype 4 (G4) Eurasian avian-like lineage swine H1N1 influenza A viruses, which are reassortants containing sequences from the pandemic 2009 H1N1 virus lineage, triple-reassortant-lineage internal genes, and EA-lineage external genes, have been reported in China since 2013. These have been predominant in pig populations since 2016 and have exhibited pandemic potential. In this study, we developed a one-step multiplex RT-qPCR assay targeting the M, HA1, and PB2 genes to detect G4 and related EA H1N1 viruses, with detection limits of 1.5 × 101 copies/µL and 1.15 × 10-2 ng/µL for the purified PCR products and RNA templates, respectively. The specificity of the detection method was confirmed using various influenza virus subtypes. When the one-step multiplex RT-qPCR assay was applied to swine respiratory samples collected between 2020 and 2022 in Korea, a virus related to G4 EA H1N1 strains was detected. Phylogenetic analysis based on portions of all eight genome segments showed that the positive sample contained HA, NA, PB2, NS, and NP genes closely related to those of G4 EA H1N1 viruses, confirming the ability of our assay to accurately detect G4 EA H1N1 viruses in the field.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Infecções por Orthomyxoviridae , Doenças dos Suínos , Suínos , Animais , Vírus da Influenza A Subtipo H1N1/genética , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Filogenia , Fazendas , Vírus Reordenados/genética , Aves , Genótipo , República da Coreia/epidemiologia , Doenças dos Suínos/epidemiologia
14.
Vet Microbiol ; 284: 109827, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37542928

RESUMO

Swine influenza (SI) is a severe disease affecting pigs, with a huge economic impact on pig farmers. Currently, available SIV vaccines do not meet the requirements for Swine influenza prevention and control, indicating the need for vaccine development using predominant strains. Here, we isolated and identified the swine influenza virus in farms and slaughterhouses in nine provinces in China to determine the most prevalent strain. A total of 8383 samples were collected between 2013 and 2022, from which 87 swine influenza virus strains were isolated. Genome sequencing identified 62 strains of the H1N1 subtype, three strains of the H1N2 subtype, and 22 strains of the H3N2 subtype. The 521# strain virus possesses the viral ribonucleoprotein (vRNP) and matrix (M) genes from the pdm/09 lineage, the HA, NA from the original Eurasian avian-like (EA) H1N1 lineage, and the nonstructural (NS) gene from the triple-reassortant (TR) lineage. The 431# strain was also a TR, except its M-gene was derived from the original EA H1N1 lineage. The pathogenicity of two 431# strains and one typical 521# strain was evaluated in mice, and the 431# strain exhibited higher pathogenicity. Therefore, a new 521# strain was selected for vaccine production because it is the current circulating strain. The vaccine produced using the 521# strain and pre-evaluated adjuvants was effective against the homologous H05 strain, as evidenced by the normal body temperature of vaccinated pigs and low virus titer of nasal swabs. In contrast, infection with the H05 strain significantly increased the body temperature of unvaccinated pigs and increased the virus titer of nasal swabs. Notably, vaccination with the 521#-based vaccine conferred some level of protection against the heterologous B15 strain (H3N2 subtype), thus reducing the viral load in pigs.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Suínos , Animais , Camundongos , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Virulência , Vírus Reordenados/genética , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/veterinária , Aves
15.
Proc Natl Acad Sci U S A ; 120(33): e2301926120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37552753

RESUMO

Swine are a primary source for the emergence of pandemic influenza A viruses. The intensification of swine production, along with global trade, has amplified the transmission and zoonotic risk of swine influenza A virus (swIAV). Effective surveillance is essential to uncover emerging virus strains; however gaps remain in our understanding of the swIAV genomic landscape in Southeast Asia. More than 4,000 nasal swabs were collected from pigs in Cambodia, yielding 72 IAV-positive samples by RT-qPCR and 45 genomic sequences. We unmasked the cocirculation of multiple lineages of genetically diverse swIAV of pandemic concern. Genomic analyses revealed a novel European avian-like H1N2 swIAV reassortant variant with North American triple reassortant internal genes, that emerged approximately seven years before its first detection in pigs in 2021. Using phylogeographic reconstruction, we identified south central China as the dominant source of swine viruses disseminated to other regions in China and Southeast Asia. We also identified nine distinct swIAV lineages in Cambodia, which diverged from their closest ancestors between two and 15 B.P., indicating significant undetected diversity in the region, including reverse zoonoses of human H1N1/2009 pandemic and H3N2 viruses. A similar period of cryptic circulation of swIAVs occurred in the decades before the H1N1/2009 pandemic. The hidden diversity of swIAV observed here further emphasizes the complex underlying evolutionary processes present in this region, reinforcing the importance of genomic surveillance at the human-swine interface for early warning of disease emergence to avoid future pandemics.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Suínos , Animais , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus Reordenados/genética , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Influenza Humana/epidemiologia , Vírus da Influenza A/genética , Genômica , Filogenia , Camboja/epidemiologia , Doenças dos Suínos/epidemiologia
16.
Arch Virol ; 168(8): 215, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524885

RESUMO

Reassortant DS-1-like rotavirus A strains have been shown to circulate widely in many countries around the world. In Russia, the prevalence of such strains remains unclear due to the preferred use of the traditional binary classification system. In this work, we obtained partial sequence data from all 11 genome segments and determined the full-genotype constellations of rare and reassortant rotaviruses circulating in Nizhny Novgorod in 2016-2019. DS-1-like G3P[8] and G8P[8] strains were found, reflecting the global trend. Most likely, these strains were introduced into the territory of Russia from other countries but subsequently underwent further evolutionary changes locally. G3P[8], G9P[8], and G12P[8] Wa-like strains of subgenotypic lineages that are unusual for the territory of Russia were also identified. Reassortant G2P[8], G4P[4], and G9P[4] strains with one Wa-like gene (VP4 or VP7) on a DS-1-like backbone were found, and these apparently had a local origin. Feline-like G3P[9] and G6P[9] strains were found to be phylogenetically close to BA222 isolated from a cat in Italy but carried some traces of reassortment with human strains from Russia and other countries. Thus, full-genotype determination of rotavirus A strains in Nizhny Novgorod has clarified some questions related to their origin and evolution.


Assuntos
Genótipo , Vírus Reordenados , Rotavirus , Animais , Gatos , Humanos , Genoma Viral/genética , Filogenia , Rotavirus/classificação , Rotavirus/genética , Infecções por Rotavirus/virologia , Federação Russa , Vírus Reordenados/classificação , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação
18.
Viruses ; 15(7)2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37515297

RESUMO

Bluetongue (BT), a viral disease of ruminants, is endemic throughout South Africa, where outbreaks of different serotypes occur. The predominant serotypes can differ annually due to herd immunity provided by annual vaccinations using a live attenuated vaccine (LAV). This has led to both wild-type and vaccine strains co-circulating in the field, potentially leading to novel viral strains due to reassortment and recombination. Little is known about the molecular evolution of the virus in the field in South Africa. The purpose of this study was to investigate the genetic diversity of field strains of BTV in South Africa and to provide an initial assessment of the evolutionary processes shaping BTV genetic diversity in the field. Complete genomes of 35 field viruses belonging to 11 serotypes, collected from different regions of the country between 2011 and 2017, were sequenced. The sequences were phylogenetically analysed in relation to all the BTV sequences available from GenBank, including the LAVs and reference strains, resulting in the analyses and reassortment detection of 305 BTVs. Phylogenomic analysis indicated a geographical selection of the genome segments, irrespective of the serotype. Based on the initial assessment of the current genomic clades that circulate in South Africa, the selection for specific clades is prevalent in directing genome segment reassortment, which seems to exclude the vaccine strains and in multiple cases involves Segment-2 resulting in antigenic shift.


Assuntos
Vírus Bluetongue , Animais , Vírus Reordenados/genética , Deriva e Deslocamento Antigênicos , África do Sul/epidemiologia , Evolução Biológica
19.
Virus Genes ; 59(4): 604-612, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37266848

RESUMO

H11N9 viruses in wild birds might have provided the NA gene of human H7N9 virus in early 2013 in China, which evolved with highly pathogenic strains in 2017 and caused severe fatalities. To investigate the prevalence and evolution of the H11N9 influenza viruses, 16,781 samples were collected and analyzed during 2016-2020. As a result, a novel strain of influenza A (H11N9) virus with several characteristics that increase virulence was isolated. This strain had reduced pathogenicity in chicken and mice and was able to replicate in mice without prior adaptation. Phylogenetic analyses showed that it was a sextuple-reassortant virus of H11N9, H3N8, H3N6, H7N9, H9N2, and H6N8 viruses present in China, similar to the H11N9 strains in Japan and Korea during the same period. This was the H11N9 strain isolated from China most recently, which add a record to viruses in wild birds. This study identified a new H11N9 reassortant in a wild bird with key mutation contributing to virulence. Therefore, comprehensive surveillance and enhanced biosecurity precautions are particularly important for the prediction and prevention of potential pandemics resulting from reassortant viruses with continuous evolution and expanding geographic distributions.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Subtipo H7N9 do Vírus da Influenza A , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Camundongos , Humanos , Patos , Subtipo H7N9 do Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H9N2/genética , Filogenia , Animais Selvagens , Galinhas , Vírus Reordenados/genética
20.
Arch Virol ; 168(6): 159, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37170023

RESUMO

A bovine rotavirus (BRV) isolate from Kirsehir was isolated from feces of a neonatal calf with diarrhea, identified, and sequenced by shotgun sequencing. Its genotype constellation is G10-P[5]-I2-R2-C2-M2-A3-N2-T6-E2-H3. The structural genes and the non-structural genes NSP1, NSP3, and NSP4 of the Kirsehir isolate were similar in sequence to those of BRVs identified in Turkey. However, VP2, NSP2, NSP4, and NSP5/6 showed similarity to those of rotaviruses from different animal hosts. These findings not only expand our current understanding of the diversity of rotaviruses but also contribute to our understanding of the evolution of rotaviruses at both the national and global levels and reinforce the significance of conducting further research on rotaviruses in Turkey.


Assuntos
Infecções por Rotavirus , Rotavirus , Bovinos , Animais , Rotavirus/genética , Infecções por Rotavirus/veterinária , Turquia , Genoma Viral , Filogenia , Vírus Reordenados/genética , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...